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Abstract

Multiplane switches present a special interest in the field
of ATM switching as they are high-performance scaleable
architectures. Not only are they efficient in terms of per-
formance but they also offer a high-degree of reliability,
an 1ssue which is very critical to ATM networks. In this
paper we present a number of different switching archi-
tectures based on multiplane designs. We study and an-
alyze them under various performance metrics, such as
throughput, mean waiting time and cell drop probability,
for which we derive exact analytical and numerical ex-
pressions, given a homogeneous traffic model. We elabo-
rate also on their implementation suitability and the var-
ious tradeoffs that can emerge.

1 Introduction

ATM switches have gained a lot of importance as they
assume additional capabilities and functionality, beside
their multiplexing and switchign tasks, in implementing
and maintaining ATM networks. Such capabilities in-
clude traffic management, flow and congestion control
and signaling. ATM switches can also host various net-
work interfaces such as the public and private NNIs, B-
ICI to mention a few.

Deploying a scaleable, long-haul ATM network re-
quires that the switches themselves, as the intermediate
systems across the network, are scaleable and expandable
as well. This has led to the design of various switching
architectures. The choice as to which architecture to im-
plement is made based on a wide set of selection and
feasibility criteria such as the services (and quality) pro-
vided - which depend on the applications’ requirements,
the performance delivered, the bandwidth demands, reli-
ability features and certainly cost. These must cater to
the network designer’s, administrator’s and users’ needs
and desires.

For instance, we mention that backbone switches (it is
expected that ATM switches will mainly act as backbone
switches) should be characterized by scaleability (ability
to accept additional physical links) and increased relia-
bility (in order to cope with network failures) without
actually sacrificing any performance or requiring a much
higher growth in complexity and consequently cost.

*Web URL: http://millennium.cs.ucla.edu/~ck

Multiplane switches, also called parallel switches con-
stitute a class of high-speed switching paradigms that cer-
tainly fall in the above category of switches. They are en-
tirely scaleable architectures which make them also very
cost-effective as they require minimal and quite simple
hardware modifications.

2 Multiplane Switching Archi-

tectures

Multiplane switches are constructed from multiple iden-
tical, space-division, non-blocking crossbar switch fabrics
that operate in parallel and are topologically bundled and
fabricated together forming the switch’s core. Multiplane
switches are thought as a good compromise between per-
formance and cost. Without being prohibitively expen-
sive they offer a high-level of performance. Various archi-
tectures can emerge depending on the network designer’s
views and requirements. As an example, on which we
elaborate later in this paper, we mention the need for
redundancy within the switch. Switch redundancy calls
normally for the availability of alternate paths (connec-
tions between the switch’s inputs and outputs) should
a software or hardware component fail (e.g., a switch-
ing plane) as to ensure the continuous flow across, i.e., a
backbone network. This concern gives rise to the issue of
switch reliability. Unfortunately, additional redundancy
comes in the form of supplemental hardware and, or, soft-
ware which of course translates into higher manufacturing
costs. The switch redundancy enhances the redundancy
and fault-tolerance along an established ATM connection.
As we know this is very important in ATM networks since
they are connection-oriented networks and there is no dy-
namic (re-)routing in the face of failures.

Other related issues that should be taken into consid-
eration when, generally, designing and building a switch
are the switch’s scaleability and feasibility for VLSI im-
plementation. Multiplane switches offer a certain degree
of scaleability due to their modular design.!

1 Another large class of switches are the multistage interconnec-
tion metworks (MINs), which are also constructed in a modular
fashion (therefore they are also considered scaleable architectures).
We can argue that the actual difference, in terms of scaleability,
between these two classes, namely the multiplane switches and the
MINs, is that the former offer scaleability (and expandability) in
the “depth” dimension (stacked-planes architecture) which leads to
a performance enhancement, while in the latter scaleability is im-



Multiplane switching architectures have been pro-
posed also as an alternative to tackle the head-of- line
(HOL) problem.? They nomrally employ both input
and output queueing. Queues on inputs are necessary
since the HOL problem is not completely eliminated. Af-
ter traversing the switching plane cells are collected and
queued at the outputs (i.e., output queues) since multi-
ple cells (from different planes) might request the same
output within the frame of a timeslot and only can be
switched out on an output link. All queues maintain a
FIFO discipline. Multiplane switches are offered as an al-
ternative to switches with speed-up [6], [7]. In multiplane
switches the speed of the switch fabric matches the speed
of the input and output links. The existence of parallel
switching planes allows for multiple cells (from different
inputs) destined to the same output to be switched simul-
taneously and independently. Thus multiplane switches
perform a similar function as single-plane switches which
they operate in multiple speeds of the output and input
trunks in order to transfer a batch of cells from different
inputs to the same output within the same timeslot.

A very important feature of multiplane switches is,
as we have already indicated, the offered redundancy:
should one or more planes fail the remaining replicate
planes can accommodate the additional load. Planes are
used in parallel and concurrently, rather than on a stand-
by basis, in order to evenly distribute the input load.

In what follows we examine a number of different
multiplane-based schemes and comment on their differ-
ences and tradeoffs. We give exact results with respect
to their performance as this is measured in terms of the
maximum throughput 4,4, achieved by the switch (out-
put ports), mean delay T within the switch and cell drop
(due to lack of buffer storage) probability Pg.

3 Modeling Approach

Since ATM networks are based on the structure of fixed-
size packets called cells, ATM switches are modeled as
time-slotted, multi-queue, multi-server queueing systems,
where one timeslot represents the time to transmit a cell.
Therefore each switching plane in a multiplane switch is
modeled as a discrete-time queueing system. The mul-
tiplane switching architectures we consider have N in-
puts and N outputs with N arbitrarily large (theoreti-
cally N — oo). We also assume that they consist of m
parallel switching planes.?

We assume that each input line carries the same traf-
fic load A, which also denotes the utilization of each input
port. An incoming cell arrives at an input, at the begin-
ning of an arbitrary time slot, with probability A (inde-

plemented in the width dimension (more stages) as to accommodate
more ports (and thus connections), given that we can view switches
as a 3-D architectures.

2HOL blocking refers to the situation where more than one HOL
cells (cells at the head of their queues) contend for the same out-
put port and try to access the same switching plane - only up to
one HOL cell can be routed. Those HOL cells that lost the con-
tention remain at their positions blocking therefore any cells that
are queued behind them, assuming a FIFO service order.

3For m = 1 we get the simple input-queueing crossbar switch
[2], thus generally m > 2.

pendent Bernoulli arrivals) and is uniformly destined to
any output port, namely with probability 1/N. Both the
balanced traffic and destination uniformity assumptions
render a homogeneous switch model. Any cells that arrive
at the HOL positions are called fresh cells. The multiple
planes are configured in such a way that the traffic load
is equally distributed among all m switching planes. No
special scheduling algorithms are implemented or consid-
ered as to which planes cells are routed through; choices
are made on a rather random basis. An output queue
is shared by all m planes. An incoming cell that enters
one of the (FIFO) input queues waits until it is routed
through one of m planes to its desired output queue. Fig.
1 portrays the tandem queueing system an incoming cell
goes through while it is in the multiplane switch.

Let us assume for the moment that both input and
output queues are infinitely large, thus we consider a no-
loss system. The overall switch throughput is denoted
by 4 where at steady-state ¥ = A. We are interested
in finding the maximum throughput ¥mas which occurs
at saturation (i.e., queue size and waiting time become
infinitely large). Therefore

)\ < max
7 (1)

_ )‘)
Tmaz = Ymaz, A 2 Ymaz

We should point out that it is the input queues, due
to the HOL blocking, that present a limiting factor in
throughput.[2]

The minimum time spent* by a typical cell while it
is in the switch is two timeslots: one for being routed
through the switching plane and one for being transmit-
ted on its selected output trunk, thus 7' > 2.
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\ Geom/G/1 GeomX/D/1 v
AT O IO
L Wy
input queue output queue

Figure 1: A representation of the tandem queueing sys-
tem and the waiting times that an incoming cell experi-
ences as it traverses a multiplane switch.

The total waiting time W that a cell experiences as
it travels through the switch consists of two components:
W1 - which represents the waiting time while the cell is
buffered in its input queues plus the fixed time (equal
to one timeslot) for the cell to be switched (through a
switching plane) to its corresponding output buffer and
Wy - which denotes the waiting time the selected HOL
cell spends queued in the output buffer awaiting for its
turn to be transmitted on the output trunk. Hence

W=Ww, +W, (2)

The total delay is simply 7'= W + 1, since it takes only
one timeslot to transmit a cell out from its final destina-
tion port.

An input queue is modeled as a Geom(A)/G/1 queue-
ing system where G characterizes the time spent by a cell
while it resides in its HOL position (until it is routed). We

4Which refers to the case where there is no queueing whatsoever.



refer to that delay (which includes the fixed transmission
time) as the HOL holding time. Since we assumed that
the cell arrivals are 1.i.d. and the output port destina-
tions are uniformly distributed then we can assume that
the HOL holding times are i.i.d. as well. We consider an
early arrival model for the Geom/G/1 queueing system:
departures occur right before the time boundary (at the
end of the timeslot) while arrivals immediately after the
time boundary (at the beginning of the timeslot). Clearly
then W is equal to the delay of a Geom/G/1 queue. Its
mean value is given by (cf. [5]):

— = AS?-=05)
WI—TGeom/G/l —S+ 2(1_)‘§) (3)
where S and S? are the first and second moments, re-
spectively, of the service time (HOL holding time) in the
Geom(X)/G/1.

Each output queue, which can potentially receive
cells from all m planes, then behaves essentially as a
GeomX /D/1 bulk arrival (discrete time) queueing sys-
tem. For the GeomX /D/1 batch arrival we assume also
an early arrival model with immediate access: if a batch
of cells (from different planes) arrive at an empty output
queue one of them (randomly chosen) is transmitted out
on the output trunk while the remaining cells are queued.
Thus, Wy is merely the waiting time in an Geom* /D/1
queue. In [4] we derive the mean waiting time for the
Geom* /D/1 queue which is (note that this is not affected
by the service order as long as the latter is impartial):

— 0-3)
)

where v is the effective arrival rate to an output queue

(4)

(each plane contributes simply v/m) If we now assume
that both input and output queues have a finite storage
capacity, 1.e., K1 and K5 respectively, then we would be
interested in finding the switch’s cell drop probability.5
Cell loss, inside a multiplane switch, occurs in two cases:
(i) when there is no buffer space to store a new incoming
cell at the input queue to which it arrives, and (ii) when a
HOL cell is denied access to an output queue, after it has
traversed one of the switching planes. In the latter case
we assume no backpressure; that is if there is no room
in the output queue the cells are simply discarded rather
than remain in their HOL positions. The switch’s overall
cell drop probability is given as

Pgp=1—(1—Pg,)(1— Pg,) (5)

where Pp, and Pp, are the blocking probabilities for the
input and output queues respectively. The aggregate out-
put rate from the multiplane switches is now expressed
(see Fig. 2) as

N =X(1 - Pg,) (6)

while the switch’s throughput is

7:/\/(1—PB2):)\(1—PB) (7)

5One can easily modify the results we derive to account for infi-
nite only input or output queues.
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Figure 2: Cell loss in a multiplane switch.

In order to obtain the input-queue size distribution
and assuming that X is the arrival rate we model an input
queue as a Geom(X)/Geom(q)/1/K;1 queue (cf. [1], [5]),
which is an approximate model to the Geom/G/1/K,
queue. Note that ¢ is the probability that a HOL cell is
served (i.e., transferred to its output queue) at the begin-
ning of the timeslot. This HOL departure probability is
expressed as the reciprocal of the mean HOL holding time
S,ie., ¢ =1/S and is a function of A (cf. [5]). A finite-
capacity output queue is modeled as a Geom® /D/1/K>
queue.

In [4] we give some important results with reference
to the Geom/Geom/1 and Geom*X /D/1 (finite and in-
finite capacity) queueing systems. We will occasionally
use some of the results derived there to carry out our
performance study in this paper.

4 Scheme
Queues
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Figure 3: A 4 x 4 scheme A ATM Switch with m = 2
switching planes.

We consider a multiplane switch, which we call Scheme
A, where each input port has a single queue that feeds
all m planes (each plane receives a total load of %, at
non-saturation). Figure 3 shows the case where m = 2.
A HOL cell randomly chooses one of the m planes to be
routed through. Therefore, there are a total of m lines
that connect an input queue to the switching planes. The
obvious merit of this scheme is redundancy: should a
plane fail then any of the remaining planes can still be
used.

We can modify (and in a way generalize) scheme A
as follows: let n (instead of m) be the number of links
between an input queue and the switching planes, in such
a way that an input queue feeds only n (of the m) planes
and that all the planes have the same number of inputs
(i.e., under a balanced traffic and due to the random se-
lection all planes then receive the same input load). Note

o g . nN
that now each switching plane is an — x N crossbar

m
switch (still offered a total traffic load of %) where

)

AW N R



n < m. We claim that this generic multiplane switch
has a maximum throughput of ¥ = 1 + m — /1 4+ m?.
We will show this result by considering the mean waiting
time for an input queue which is given by Eq. (3). We
notice that as W, — oo then the input queue attains its
maximum throughput which is 4,4, meaning that the
denominator of Eq. (3) is zero yielding

1

Ymazx = § (8)
Let A; ; be the number of the fresh HOL cells destined
to the j-th output to be routed through the k-th plane.
Then we can show, as in [2], that for N — oo, 4; ;(2)
becomes the z—transform of a Poisson process with pa-
rameter A/m (independent of n), which means that the
arrival process of all the fresh HOL cells destined to the
same output j, namely A; = ZTzl Aj p, is Poisson® with
parameter A. It is evident then that the HOL holding
time is equal to the delay in a discrete M(A/m)/D/1

queue with random order of service (ROS), thus

A/m
(1=X/m)

2m — A
=y @

S=Wwmpn+1= 2

Applying Eq. (9) in Eq. (8) and solving for A yields

7ma1‘:1+m_\/1+m2

Throughput is then expressed as

A<1l+m—+vV14+m?

A,
7_{1—|—m—\/1+m2, A>14m—+V1+m?
lim 4mee = 1, which is the

It should be noted that
m—oQ

same throughput as in ATM switches with pure output
queueing [2].

We now proceed with the calculation of the mean
waiting time for a cell entering the multiplane switch.
With respect to the discrete (ROS) M/D/1 queue we
have from [5] (after properly substituting A/m for A for
our case here) that

(10)

(11)

5X3 4+ mAZ — 12m2) + 12m3

5= 6(m — \)2(2m — )

(12)

From Egs. (3), (9) and (12) we get

o 1IN — (32m + 6)0° + (48m + 30)m)

T 6(m — A)(2m — A)
" —(24m + 48)m?\ + 24m*

(A2 =2(1 + m)A + 2m)

Wy is merely given by Eq. (4) where v is as in Eq. (11),
since the input rate to an output buffer is equal to the
aggregate throughput of the switching planes. Both W
and W, are independent of n, hence is also the mean
total waiting time W. As throughput attains its maxi-
mum (i.e., when A — 1+ m — /1 +m?) then W; — oo,

thus W — oco. As m — oo then lim W; = 1 and

o o 3 m— o0
limy, oo Wo = Wapy1 = m; as a result
— 2—A
Im W=—— 13
mse 21— ) (13)
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Figure 4: Mean waiting time vs. input load in the Generic
Multiplane Switch (Single Input Queues).
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Figure 5: Cell drop probability in the Generic Multiplane
Switch (Single Input-Queues).



Finding the cell drop probability we adopt a result
from the analysis of the Geom(A)/Geom(q)/1 queue in

[4, Eq. (A.5)] which we write here (after substituting for
2(m=2X
9= = puss

2 Ky
(A = 2(1+ m)X + 2m) ( gr=immny
Py, = (2(1 0 )\)) (14)

A2 K
2(m— ) = A(2m — ) (m)

Pp, is numerically computed based on Eq. (6) and [4,
Eq. (A.10)]. The switch’s overall cell drop probability is
then given as in Equation (5). We see that also the cell
drop probability is independent of n, which is of course
consistent with our previous results about the throughput
and the mean waiting time.

Figs. 5 (a)-(b) show the cell drop probability for dif-
ferent values of m and input - output queue sizes, K;
and Ky respectively (in Fig. 5 (b) two curves are over-
lapping). We see that as m increases the cell drop prob-
ability becomes more sensitive to the output queue size.
This is reasonable since the larger the m the more cells
are transferred to the output queues. For a constant m
the cell drop probability is more sensitive to the input
queue size. This is attributed to the acute effect of the
HOL blocking phenomenon.

We mentioned at the beginning of this section that
Scheme A is a special case of the general scheme for n =
m. Since the throughput and mean waiting time in the
general scheme are independent of n then it is obvious
that these are also the same in the scheme A multiplane
switch. The cell drop probability is the same as for the
generic switch as well.

An interesting observation is that this type of mul-
tiplane switch has exactly the same throughput as our
single-crossbar Multiple Input-Queueing switch [3], in
which each input port expands into m queues. The mean
waiting times are different though as might be anticipated
since the multiplane switch can achieve smaller waiting
times due to the output queueing effect.

5 Scheme B - Dedicated Access
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Figure 6: A 4 x 4 scheme B ATM Switch with m = 2
switching planes.

As another special case of the generalized scheme in in-
troduced in section 4 we consider the case where n = 1.
Each switching plane has % inputs and thus it operates
as an % x N crossbar (with traffic load %) We refer to
this specific multiplane design as scheme B (Fig. 6).

6Note that this stochastic process is independent of m.

Accordingly, the asymptotic saturation throughput
for this type of multiplane switch is again

7ma:c:1+m_ V1+m2

It is clear that since scheme B is a special case of
the generic multiplane switch for n = 1 then the results
derived for the mean waiting time and cell loss in the
previous section apply here as well. For m = N, Scheme
B degenerates into a single crossbar switch with output
queues only (no multiple planes or input queues). In this
case: W =Wy = ﬁ and Ymar = 1. [2]

The obvious tradeoff between the different architec-
tures that can emerge from the generic multiplane model
(for the different values of n) is the wiring cost (number
of crosspoints) vs. the offered redundancy: less planes
means less redundancy for a multiplane switch. For in-
stance, we mention that in scheme B the total number of
crosspoints 1is m%N = N2, while scheme A yields mN?
crosspoints; that is m times more than scheme B!

In conclusion, we indicate that schemes A and B
present the two extremes in terms of redundancy: while
scheme A offers a 100% redundancy scheme B has no re-
dundancy at all as each input line can access only one
plane.

6 Scheme C - Parallel, Multiple
Input Queues
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Figure 7: A 4 x 4 scheme C ATM Switch with m = 2
switching planes.

In this section we consider multiplane switches where each
input port is expanded into more than one input queue.
Each input queue is (permanently) connected to one or
more switching planes. More specifically we allow n (n <
m) queues per input port, where each queue feeds m/n
planes.” For instance, for m = 16,n = 4 we have four
queues per input and each queue is linked to four planes.
An incoming cell chooses randomly which of the n queues
to join. We show that the maximum throughput for this
generic type of multiplane switch is:

y=n+m—\n?+m? (15)

Again, we consider the mean waiting time for a typical
input queue which is obtained from Eq. (3) after sub-
stituting A/n for A, since the arrival rate to each input
queue is now A/n (i.e., Geom(A/n)/G/1):

A(S? - S)

W1 == §+ _2(7’L — )‘g) (16)

"Without any loss of generality we assume that n divides exactly
m.



We can show that (for N — oo) the distribution of A;
is again a Poisson with parameter A/m. Thus, S and
S? are given by Egs. (9) and (10) respectively, since the
service time in the Geom(A/n)/G/1 queue is the same
as the total delay in a discrete M(A/m)/D/1 queueing
system.

Applying the same argument about the maximum
throughput as in scheme A, we set the denominator of
Eq. (16) equal to zero and then solve for A:

N 2n(m — A)
TS 2m—2A
yielding
Ymaz = N+ m — \/n% +m? (17)
From Eq. (17) we readily have that lim vy = n.

m— 00

We can write the maximum throughput as ymaex =
n <1 + % —/1+ (%)2) which means that it is n times

the maximum throughput of a (scheme A) multiplane
switch with m/n independent planes. We then immedi-
ately recognize that we could have arrived at Eq. (17) by
just considering Eq. (10) for m/n planes. From Eq. (17)
it is clear that at saturation ¥,,4, = 1 for n > 1. In other
words, a multiplane switch with n = 2 (input queues) and
m = 2 (switching planes) is the minimum required con-
figuration in order to achieve a 100% throughput. Fig.
7 shows such a switch. We refer to the special case of
multiplane switch where n = m, as scheme C. In scheme
C each plane has effectively each own dedicated queue on
every input.
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Figure 8: Mean waiting time vs. input load in the Generic
Multiplane Switch (Multiple Input Queues).

With respect to the mean waiting time we have that
Eq. (16) yields
W= 1A% — (32m + 6n)A3 + (48m + 30n)mA2—
b 6(m — A\)(2m — X)
—(24m + 48n)m?X + 24m3n
(A2 =2(m+ n)A + 2mn)

W, is given by Equation (4) where

A, A < Ymaz
7:{ n+m—vn2+m?, A> Ymao (18)
Asmﬁmthenn}ﬂomzlandn}ﬂom:ﬁ,
hence
.= R —— 2—A
n}LI};oW:n}L{I;O(W1+W2):m (19)

which is independent of n. In fact we notice that Eq. (19)
is the same as Eq. (13).
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Figure 9: Cell drop probability in the Generic Multiplane
Switch (Multiple Input-Queues).

Figs. 8 (a)-(b) show the mean waiting times of mul-
tiplane switches for various values of m and n. It is note-
worthy mentioning that for n > 1 the n—curves collapse



into a single curve. This is, in a way, consistent with our
observation regarding throughput, which leads us to the
conclusion that n = 2 is sufficient for implementing the
type of multiplane switch we described in this section.
For the various values of m we see that m = 4 qualifies
as a good choice for m.

As far as the cell drop probability is concerned we can
write from Equation (A.15), where now an input queue
is modeled as a Geom(A/n)/Geom(q)/1 queue, that

Ky

Pp, = Ky (20)
since q = % = 22(:11:;‘) Note that, for fairness (i.e.,

maintain the same total buffer space), the buffer capacity
per input port, namely K1, is equally allocated to the n
queues, that is each input-queue size is K;/n. Equation
(20) combined with Eqs. (6) and [4, Eq. (A.10)] gives the
cell drop probability as described in Eq. (5). In Fig. 9 we
illustrate the various tradeoffs that arise using different
values of m, n and queue sizes (K1, Ka).

Concluding this section we mention that for n = 1 we
readily obtain scheme A.

7 Scheduling Considerations

We recognize that the performance of the aforementioned
multiplane switches can be considerably improved if we
take into account special scheduling as to which planes
the cells should be transferred through in order to min-
imize the output contention (and effectively the HOL
blocking).

An example of a scheduling algorithm is one that em-
ploys a knockout arbitration scheme: all HOL cells des-
tined for the same output try to access the first plane;
those that loose the contention try then the second and so
on. This assumes a multiple contention resolution phase
within the same timeslot. In another similar schedul-
ing example HOL requests to the same output destina-
tion could be queued up in a (virtual) queue where each
would be then served by a different plane thus trying to
minimize the output contention within the same crossbar
switching plane. These scheduling algorithms result into
a performance identical to the one achieved by a speedup
switch with a speedup factor of m.[7] It is apparent that
in both cases all up to m HOL cells destined for the same
output are guaranteed to be transferred to that output.

8 Conclusion

Multiplane switches are architecturally appealing as they
are simple designs. They are cost effective and practi-
cal solutions as they can combine two or more switching
fabrics within the same switch box. We studied the per-
formance of various multiplane designs with respect to
their throughput, mean waiting time and cell drop statis-
tics. Note that from the mean waiting times one can

easily derive the maximum throughput of the switch in
question.

The switches under consideration had common out-
put queues and common or separate input queues
(schemes A-B and C respectively). In the case of separate
input queues we can avoid any sequencing problems by
forcing cells that belong to the same traffic stream (i.e.,
VC) to be queued in the same input thus avoiding having
them routed through different planes. In general, sepa-
rate queues can be used to implement traffic streams with
priorities or with individual traffic requirements (i.e., as
to guarantee the promised QoS) or according to the cell’s
destination.

Moreover, we demonstrated the tradeoff between re-
dundancy and wiring cost (schemes A and B) whereas the
performance is not affected whatsoever. In addition, we
showed that we can further improve the performance of
multiplane switches by not only looking at their through-
put but also at their mean waiting time and cell drop
probability metrics.
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